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ABSTRACT 

Electronic health record (EHR) algorithms for defining patient cohorts are commonly shared as free-text 

descriptions that require human intervention to both interpret and implement. We developed the 

Phenotype Execution and Modeling Architecture (PhEMA, http://projectphema.org) to author and execute 

standardized computable phenotype algorithms.  With PhEMA, we converted an algorithm for benign 

prostatic hyperplasia, developed for the electronic Medical Records and Genomics network (eMERGE), 

into a standards-based computable format.  Eight sites (7 within eMERGE) received the computable 

algorithm and 6 successfully executed it against local data warehouses and/or i2b2 instances.  Blinded 

random chart review of cases selected by the computable algorithm shows PPV ≥90%, and 3 out of 5 sites 

had >90% overlap of selected cases when comparing the computable algorithm to their original eMERGE 

implementation. This case study demonstrates potential use of PhEMA computable representations to 

automate phenotyping across different EHR systems, but also highlights some ongoing challenges.  

 

  

http://projectphema.org/


 

INTRODUCTION 

Electronic health records (EHRs) are designed primarily for clinical care and operations, which introduces 

limitations to the data when used for secondary purposes.  These include data availability, accuracy, and 

information only available in unstructured narrative text.[1-3] To navigate these issues, researchers often 

develop “phenotype algorithms”– a set of criteria that specifies the analysis of data for identifying and 

studying patient populations with a given biomedical condition or indication.[4, 5] 

 

When replication of results or additional statistical power is needed, a phenotype algorithm may be shared 

with other institutions for execution on their EHR data, using various methods and tools[6].  A common 

method used to share algorithms is as free-text descriptions of the algorithmic logic, possibly augmented 

with flowcharts and lists of codes from medical vocabularies.  Implementing this description in a 

computable form (such as a database query) requires humans to interpret and make decisions for 

deployment, which can be error-prone and time-consuming.[7]  An approach pursued via common data 

models (CDMs) is to organize EHR data according to a common standard. A CDM, such as those used by 

Observational Health Data Sciences and Informatics (OHDSI),[8] the National Patient-Centered Clinical 

Research Network (PCORnet),[9] and Informatics for Integrating Biology & the Bedside’s (i2b2’s)[10] 

Shared Health Research Informatics NEtwork (SHRINE),[11] can enable cross-site queries since the 

semantic and syntactic data organization are shared, but require transforming data to the CDM.  Within 

the electronic Medical Records and Genomics (eMERGE) network,[12] the Phenotype KnowledgeBase 

(PheKB)[13] was created as an online environment to support collaboratively developing, validating, and 

sharing electronic phenotype algorithms across institutions, with a forum for clarifying implementation 

details as is often necessary.  Truly portable phenotypes requiring little or no human interpretation and 

data transformation, would facilitate increasing the number of implementing institutions, but are not 

widely available.   

 



 

To address this gap, we have developed the Phenotype Execution and Modeling Architecture (PhEMA; 

http://projectphema.org),[14] an open-source infrastructure for standards-based authoring, sharing and 

execution of phenotyping algorithms. PhEMA uses the National Quality Forum’s (NQF’s) Quality Data 

Model (QDM) and HL7’s Health Quality Measure Format (HQMF)[15] to unambiguously model 

phenotype definitions, and enable the execution of these phenotype algorithms against different data 

representations, including local data warehouses (LDWs), and i2b2 data repositories. We describe a real-

world use case for PhEMA: a computable algorithm for identifying patients with benign prostatic 

hyperplasia (BPH) from EHRs. 

 

METHODS 

BPH Phenotype Algorithm 

BPH was chosen as a test phenotype for PhEMA in part because the case identification algorithm contains 

four of the most commonly used EHR data elements (demographics, diagnoses, procedures, and 

medications), all of the Boolean logical operators (And, Or, Not), a temporal relationship (age), and one 

aggregation function (count).  Since the majority of sites in this study recently executed the algorithm for 

eMERGE, it also provided a baseline for comparisons against the results using PhEMA. 

 

A single institution (Vanderbilt University) defined the original BPH phenotype algorithm for the 

eMERGE study (referred to as the “original algorithm”), which was modified by the authors for 

implementation within PhEMA (referred to as the “PhEMA algorithm”).  The PhEMA algorithm used a 

combination of standard medical terminology codes for medications (RxNorm and NDC), diagnostic 

codes (ICD-9), and procedure codes (CPT).  Although the original algorithm used natural language 

processing (NLP) on patients’ problem lists, NLP was not included in the PhEMA algorithm due to a lack 

of standard representations of NLP.[16] The study population was defined as males age 40 and older who 

had no evidence in their EHR of prostate, penile, urethral, or bladder cancer. Within the PhEMA 

algorithm, the exclusion used just ICD-9 billing codes, although the original algorithm also used ICD-O-3 

http://projectphema.org/


 

codes from tumor registries and mentions of these cancers in the problem list.  The PhEMA algorithm 

selected cases only, who were defined as those in the study population with any BPH-related ICD-9 codes 

on 2 separate days, plus at least one BPH medication or BPH-related surgery code (Figure 1).  

 

Translation of Algorithm into a Standardized, Executable Format 

The modified PhEMA algorithm to detect BPH cases was represented using the PhEMA Authoring Tool 

(PhAT) (available at: https://github.com/PheMA/bph-use-case), by one of the authors (LVR).  Since 

PhEMA relies on the presence of value sets (groups of medical terminology codes) to represent different 

medical concepts (e.g., medications, diagnoses), we first looked at the Value Set Authority Center 

(VSAC)[17] for existing value sets.  Outside of the value set of “Male”, no existing value sets met the 

need of our algorithm; therefore, the authors defined and published the necessary value sets within the 

VSAC for general use (also available at: https://github.com/PheMA/bph-use-case). 

 

Given the use of QDM 4.1 [16, 18] within PhEMA, which accounts for the status of a data element (e.g., 

an active diagnosis, as opposed to the more abstract “diagnosis”), we included in our definition the 

relevant statuses for diagnoses, medications and procedures.  This approach allows a more precise 

algorithm definition, as it removes the ambiguity of which statuses are appropriate. 

 

The phenotype definition was exported from the PhAT into two executable KNIME workflows (KNIME 

AG, Zurich Switzerland, Figure 2): one workflow executed query definitions using i2b2 messaging 

(Figure 2A), and the other executed against an LDW (Figure 2B).  KNIME was chosen as the execution 

engine as it is freely available, runs on multiple operating systems, and, most importantly, can connect 

directly to external systems that expose a web API.  Furthermore, KNIME uses a modular graphical 

workflow interface that allows encapsulation of algorithm logic (the same across sites) from configuration 

details (variable between sites), allowing each site to configure the connection to their data without 

having to edit the algorithm’s logic.[18, 19]  

https://github.com/PheMA/bph-use-case
https://github.com/PheMA/bph-use-case


 

 

Upon review of the exported KNIME workflows, we identified opportunities to optimize their execution 

before distributing to sites.  First, within sites’ i2b2 instances, diagnosis status (active, resolved or 

inactive) was not explicitly described; thus, the 3 queries (one for each status) were collapsed into a single 

query.  Second, by default the workflow returned multiple types of results within i2b2 for each query – a 

count, a list of patients, and a list of events.  We edited the workflow to only return patient sets, to further 

reduce execution time.  Finally, we removed the temporal relationship between BPH diagnoses and 

instead required patients have ≥2 BPH diagnoses, as some sites did not have visits associated with 

diagnoses in their i2b2 data. 

 

Once given to the implementation site, each workflow required up to two local customization steps.  First, 

the site must specify the connection details for their repository (i2b2 or LDW).  Second, the site 

performed data customization if needed. For i2b2, this involved updating the ontology mapping so the 

correct concepts could be found; and for the LDW, editing template data queries to return the required 

data elements. Two members of the PhEMA team (JAP, LVR) guided this customization via remote 

screen sharing. 

 

Execution of PhEMA BPH Algorithm 

Eight sites (Columbia, Cornell, Geisinger, Harvard, Marshfield, Mayo, Northwestern, and Vanderbilt), 

executed the PhEMA BPH algorithm.  Five eMERGE sites were able to assess if the same eMERGE 

subjects were identified by both their earlier custom implementation of the eMERGE BPH algorithm and 

the PhEMA implementation. To evaluate accuracy, we conducted manual blinded review of randomly 

selected cases using the chart abstraction form used for validating the eMERGE algorithm. 

 

RESULTS 

Execution 



 

Of the eight sites, five executed the algorithm against their i2b2 repository, and four executed the 

algorithm against their LDW (Northwestern executed against both). Table 1 shows the number of cases 

identified using PhEMA, along with the number of males ≥40 years old in each site’s data repository. 

Two sites (Harvard, Mayo) were unable to completely execute the KNIME workflow.   



 

Site 

Implementation Validation 

Data 
Repository 

Patient 
Population 

Males ≥40 
y.o. 

Males ≥40 
y.o. w/ 
BPH 

eMERGE Implementation 
PhEMA 

Implementation 

Cases 
Reviewed 

Case 
PPV 

Controls 
Reviewed 

Control 
PPV 

Cases 
Reviewed 

Case 
PPV 

Columbia Local eMERGE 1,441 56       
Cornell i2b2 Entire 

LDW 1,064,560 7,805     98 96% 
Geisinger Local eMERGE 5,453 1,039       
Harvard i2b2 eMERGE 1,752 N/A       

Marshfield i2b2 eMERGE 8,557 826 25 100% 25 100% 25 100% 

Mayo i2b2 Entire 
LDW 1,001,063  N/A 

      

Northwestern i2b2 & 
Local eMERGE 1,235 127 

30 83% 10 80% 59 90% 

Vanderbilt Local Entire 
LDW 1,201,845 5,118 50 100% 25 100% 50 92% 

Total:     2,284,843 14,974 105  60  232  
 

Table 1.  Results of PhEMA implementation and validation of eMERGE BPH case algorithm at each site. N/A indicates unable to complete the 

execution of the PhEMA KNIME workflow.  Sites that were unable to complete a manual chart review as part of the validation are shaded in gray.  

PPV = Positive Predictive Value; LDW = Local Data Warehouse 

 



 

 

Validation 

Due to resource limitations, not all sites were able to perform a chart review.  Results for those sites 

completing chart reviews are shown in Table 1.  Three sites had validated the eMERGE implementation 

of the algorithm.  The eMERGE case PPV was 100% at 2 of these 3 sites, and >80% at Northwestern 

(Table 1).  Of the four sites that completed a chart review of the PhEMA implementation, all 4 sites 

reported PPV ≥90% with Northwestern increasing overall PPV for cases in their PhEMA implementation, 

and Vanderbilt decreasing. 

 

Figure 3 shows the assessment of overlap in the cases between the eMERGE and PhEMA algorithm 

implementations for the 5 sites that successfully implemented both versions.  Overall, we found that 3 

sites had at least 90% overlap, and 2 sites had approximately half overlapping.   

 

DISCUSSION 

The ≥90% overlap at 3 of those 5 sites, and the fact that all of the PhEMA implementation case PPVs 

were ≥90%, a threshold often used in genetic studies,[4, 7] demonstrates the accuracy of PhEMA, and its 

ability to reproduce manual algorithm implementation results using a standardized computable format. 

We anticipated some differences due to the modifications of the algorithm, and PhEMA’s current 

inability to handle NLP.  Further discrepancies at Marshfield and Northwestern were traced to different 

interpretation and implementation of the eMERGE algorithm than originally intended (excluding all 

inclusion events at ages less than 40, omission of some ICD-9 and CPT codes, or requiring diagnoses to 

be made by the institution’s providers). This did not greatly impact the validity of either eMERGE or 

PhEMA implementations, as PPV was sufficient in both instances (Table 2).  However, the interpretation 

differences highlight the importance of the goal of PhEMA to produce computable portable phenotype 

algorithms, which eliminate the need for human interpretation of free-text.   

 



 

Although current algorithm methodology can and does result in PPVs that demonstrate sufficient 

accuracy to power GWAS,[20-27]  PhEMA seeks to improve the efficiency and portability of executing 

across different sites by producing computable algorithms; however, manual site-specific configuration 

was needed.  Informal observation suggests that executing a PhEMA phenotype takes less time to 

implement than a corresponding free-text description, although additional time is required by the 

algorithm author to create a computable definition using PhAT.  For example, Geisinger configured and 

executed the PhEMA implementation in less than a day, which was considerably less time than it took to 

create their custom implementation for eMERGE.  Our approach can be compared to networks with a 

CDM where similar successes have been reported for portable, computable phenotype algorithms, but 

with the requirement that all sites have a pre-coordinated data model.[28, 29] 

 

Most of the difficulties we had in executing across sites were technical.  Table 2 details five of the largest 

issues that we worked through with sites.  We purposefully limited the amount of time to troubleshoot 

issues as a proxy measure for portability, and thus marked Harvard’s and Mayo’s executions as unable to 

complete.  Mayo’s issue provided insight that the de-compositional approach used to construct our 

workflows extracted patients separately for each data element (e.g., all males, all individuals >=40 years 

old, etc.), then joined them all together, rather than use a stepwise approach to find patients with the first 

data element (males), and then of those, patients with the second data element (males >=40 years old). 

Additional notes regarding our analyses of these issues are available in Table 2. 

 

Table 2. Technical issues encountered with implementation of the BPH phenotype at other sites. 

Issue Analysis Resolution 

Terms in BPH value sets 

were not represented in the 

site’s local ontology. 

A cursory review by the site 

implementer would allow them to 

Manually edit the terms used in a 

value set to include the local 

terms for the institution. (e.g., 



 

determine which terminology(ies) 

they did not have loaded. 

manually identify all NDC codes 

related to the RxNorm codes for 

medications, then add those 

NDC codes to the list of terms in 

the medication value set) 

The Harvard development 

server was able to execute the 

workflow, but the production 

instance returned an HTTP 

503 “Service Unavailable” 

error. 

After engaging the site’s server 

team, no additional information was 

available to explain this error.  Even 

when the server was returning a 503 

response to the KNIME workflow, 

the i2b2 web client that uses the 

same services was available and 

responsive.  This indicated that the 

actual service was available, but 

may be responding in this way to 

the frequency of the requests from 

KNIME. 

This has not yet been resolved. 

KNIME workflow would not 

complete execution against 

the Mayo i2b2 instance. 

The i2b2 instance was the largest of 

the sites involved with this study, at 

over 9 million patients.  We 

confirmed that this was not a 

limitation of the i2b2 platform, by 

manually creating and executing the 

BPH algorithm using their i2b2 web 

interface.  Instead, we identified 

This has not yet been resolved. 



 

scalability issues with our KNIME 

workflow construction process that 

lead to computational bottlenecks, 

especially when processing queries 

against a repository of this size. 

Execution speed of the 

workflow is slow. 

Given the decompositional nature 

of the query, where individual 

criteria are each queried and then 

later combined, we confirmed that 

the overall execution time would be 

increased compared to executing a 

single, final query. 

Future work includes improving 

our execution platform to 

increase overall speed. 

Unable to connect to the local 

data warehouse. 

Sites frequently received 

connection errors.  When working 

with sites to resolve these, we 

identified that they were legitimate 

errors, but that the way they were 

reported back to users was not 

helpful and did not offer any 

resolution. 

Future work includes improving 

the feedback from the execution 

platform to describe (if possible) 

what may be causing a 

connection issue. 

 

Finally, because selecting a random subset from the entire population for manual review was not feasible, 

our methodology for selection of charts for manual review was biased. We selected only from cases found 

by the execution of our phenotype algorithms, plus at some sites from a convenience sample (eMERGE 

subjects).   

 



 

Future work 

Given the lessons learned here, the PhEMA project is restructuring our approach to executing phenotype 

algorithms.  We are developing an execution architecture that will better leverage efficiencies that can be 

gained by providing the entire (or large portions of the) phenotype query to the underlying database 

system.  In addition, we are expanding our support for the other common data models, such as 

OMOP/OHDSI, for further cross-platform compatibility. 

 

CONCLUSION 

This case study demonstrates that a phenotype authoring system, such as PhEMA, could result in efficient 

and accurate implementations of EHR phenotype algorithms across multiple sites, and support differences 

in underlying data repositories.  In this study, we identified some limitations in the current execution 

approach, which will provide guidance in future development.   
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FIGURES 

 

Figure 1:  BPH case algorithm. ICD = International Classification of Diseases, CPT = Current Procedural Terminology: ICD and CPT codes 

available in the Value Sets posted at: https://github.com/PheMA/bph-use-case. 

https://github.com/PheMA/bph-use-case


 

 



 

Figure 2: KNIME workflows that read data from either an i2b2 instance (A), or an LDW (B), and execute the BPH case algorithm.  After a user 

completes configurations specific to their site within these workflows, including database connection details (server address, username, password, 

etc.) and any necessary data customization, the user executes the entire KNIME workflow in one step. Upon execution, each QDM Data Element 

node reads in the i2b2, or LDW, connection details; and i2b2 ontology mapping, or LDW queries the users modified; and extracts the relevant 

data, after which the subsequent nodes execute the algorithm logic. On the far right of each workflow in the XLS Writer node, in which users can 

specify a filename to which to write the identifiers of the patients with BPH as found by the algorithm.  

A: i2b2: The Table Creator node on the top left is where a user enters their i2b2 connection details.  Below that node, the “OIDs to i2b2 ONT” 

metanode is where users make adjustments, if necessary, to the i2b2 ontology mapping.  This workflow that executes against the publicly available 

demonstration version of i2b2 is available at: https://github.com/PheMA/bph-use-case 

B: LDW: The Database Connector node on the top left is where a user enters their LDW connection details. Then, within each QDM Data Element 

metanode, users open a Database Table Selector node, in which the value set for that data element is available as a variable, and edit the template 

query in that node to query the appropriate data for that data element from their LDW (for example, edit the template query “select 

diagnois_code_column from diagnois_table where diagnosis in (diagnois_list_variable)” by replacing the column and table names (in italics) with 

the column and tables names in the LDW). 

  

https://github.com/PheMA/bph-use-case


 

 

Figure 3: Comparison of eMERGE implementation to PhEMA implementation results illustrating overlap, for sites that successfully executed 

both the eMERGE and PhEMA implementations and thus had results to compare. Each circle in each Venn diagram is colored to represent the 

number of patients found by the algorithm to have BPH as follows:  green depicts those found by both implementations (the overlap), yellow 

depicts those found only by the eMERGE implementation, and blue depicts those found only by the PhEMA implementation. Both the number (N) 

and percentage of patients is shown for each circle. Venn diagrams drawn by the Pacific Northwest National Laboratory’s Venn Diagram Plotter, 

freely available from: https://omics.pnl.gov/software/venn-diagram-plotter  

https://omics.pnl.gov/software/venn-diagram-plotter
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