Indigenous Australian

Diverticulosis and Diverticulitis

An algorithm for finding patients with diverticulosis, and of those, patients who also have diverticulitis, and to also find control patients.  Control patients will have had a colonoscopy but have no evidence of diverticula.

Simple NLP (a portable program is posted here, with instructions, and support is availabe from NU as needed) of colonoscopy reports is the gold standard algorithm, but if the text of colonoscopy reports is not available, an alternate algorithm using CPT & ICD-9 codes can be used, which is also posted.

Owner Phenotyping Groups: 
View Phenotyping Groups: 
Final

Hearing Loss

Phenotype Description:  individuals with sensorineural hearing loss (SNHL)
Below are algorithms used to identify individuals with SNHL at BioVU. If you have questions regarding any of the information presented on this page, you may contact either:
Wei-Qi Wei at wei-qi.wei@vanderbilt.edu or Joshua Denny at josh.denny@vanderbilt.edu

Final

Herpes Zoster

Herpes zoster, also known as zoster or shingles, is caused by a virus called varicella zoster virus (VZV). Initial infection with the virus causes chickenpox. After chickenpox resolves the virus continues to resides in certain nerve cells. It may remain latent for many years. It may also re-activate, many years later, and cause shingles which is a painful skin rash. How the virus remains latent in the body is not well understood.

View Phenotyping Groups: 
Final

Ovarian/Uterine Cancer (OvUtCa)

The KPWA/UW-led ovarian/uterine cancer phenotype has been validated at Mayo Clinic, the secondary phenotype development site.  Validation results at both the primary and secondary sites were strong and the phenotype is ready for network wide implementation.  The pseudo code document posted 11/30/2017 is correct as is and should be used by network sites for phenotype implementation.  A validated data dictionary of covariates for this phenotype will be added to PheKB by 2/15/2018, but sites are encouraged to begin implementing the phenotype algorithm now.

Final

Urinary Incontinence

Description of a weakly supervised machine learning approach for extracting treatment-related side effects (Urinary Incontinence) following prostate cancer therapy from multiple types of free-text clinical narratives, including progress notes, discharge summaries, history and physical notes. Prostatectomy surgery and radiation therapy are our treatments of interest for prostate cancer.

Final

Pages