Caucasian (European)

PGx medication risk prediction model

This algorithm predicts those who are going to be exposed to warfarin, simvastatin, or clopidogrel as three medications that have known pharmacogenomic influences.  This algorithm was used to select individuals for the Vanderbilt PREDICT (Pharmacogenomic Resource for Enhanced Decisions in Care & Treatment) program, which prospectively tests individuals at risk of needing medications whose efficacy is effected by genetic variants.  

 

For more information on PREDICT, see http://mydruggenome.org.

Owner Phenotyping Groups: 
Final

Post-event Pain algorithm

Pain is a personal, multidimensional experience in which genetic biomarkers has a main role in determining pain sensitivity, perception and tolerance. Pain is a major concern for surgical patients and post-operative pain management still present a major challenge both in inpatient or outpatient settings. Apart from genetic factors, there are many other variables that may affect pain perception for example, pretreated patients may require less post-surgical medications, and they may recover more quickly.

Owner Phenotyping Groups: 
View Phenotyping Groups: 
Final

SLE (Systemic Lupus Erythematosus) using SLICC (Systemic Lupus Internation Collaborating Clinics) Criteria

Systemic Lupus Erythematosus (SLE) is a chronic, systemic autoimmune disease that can affect many parts of the body including skin, lungs, brain, heart, kidneys, joints, and blood vessels. SLE presentation can vary significantly between patients. Because of this, it can be challenging to identify a patient as having SLE. Between 300,000 and 2,000,000 people in the US are estimated to have SLE. Determination of an exact number of people affected is challenging as the disease is difficult to identify given the diverse presentations and the length of time it may take for symptoms to appear.

Owner Phenotyping Groups: 
View Phenotyping Groups: 
Final

Systemic lupus erythematosus (SLE)

We used Vanderbilt’s Synthetic Derivative (SD), a de-identified version of the EHR, with 2.5 million subjects. We selected all individuals with at least one SLE ICD-9 code (710.0) yielding 5959 individuals. To create a training set, 200 were randomly selected for chart review. A subject was defined as a case if diagnosed with SLE by a rheumatologist, nephrologist, or dermatologist.

Final

Urinary Incontinence

Description of a weakly supervised machine learning approach for extracting treatment-related side effects (Urinary Incontinence) following prostate cancer therapy from multiple types of free-text clinical narratives, including progress notes, discharge summaries, history and physical notes. Prostatectomy surgery and radiation therapy are our treatments of interest for prostate cancer.

Final

Pages